Neural Networks in Model Predictive Control
نویسنده
چکیده
ABSTRACT The contribution is aimed at predictive control of nonlinear processes with the help of artificial neural networks as the predictor. Since this methodology is relatively wide, paper only concentrates on the prediction via artificial neural networks. Special attention is paid to the usage of offline-learnt predictor based on multilayer feed forward neural network. The proposed method is tested in simulations on a nonlinear system.
منابع مشابه
Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی
Introduction: Meta-heuristic and combined algorithms have a great capability in modelling medical decision making. This study used neural networks in order to predict Type 2 Diabetes (T2D) among high risk individuals. Methods: This study was an applied research. Data from 545 individuals (diabetic and non-diabetic), in Diabetes Clinic of Hamedan University of Medical Sciences, we...
متن کاملDecentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process
The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...
متن کاملPredictive Control of Gas Injection in Natural Gas Transport Networks
The present sought to draw a comparison between Model Predictive Control performance and two other controllers named Simple PI and Selective PI in controlling large-scale natural gas transport networks. A nonlinear dynamic model of representative gas pipeline was derived from pipeline governing rules and simulated in SIMULINK® environment of MATLAB®. Control schemes were designed to provide a s...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کامل